“无需 4090,6GB 显存笔记本也能生成带中文字的商业级海报!
Z-Image 作为一款高效能、轻量化的生成式 AI 模型,不仅推理速度快,更原生支持中英双语理解与精准渲染。本文将从模型下载 → 配置 ComfyUI → 撰写提示词 → 解决常见报错,手把手带你完成 Z-Image 的本地部署与实战使用,小白友好。”
是一款开源的 AI 助手,将 Google 的 Gemini 模型的强大功能直接带入你的终端。它作为一个对话式的“智能”命令行工具工作——这意味着它能够推理你的请求、选择工具(如执行 shell 命令或编辑文件),并执行多步计划以帮助你的开发工作流程。
提示 1:使用 GEMINI.md 以保持持久上下文
提示 2:创建自定义斜杠命令
提示 3:通过您的自有 MCP 服务器扩展 Gemini
提示 4:利用记忆添加和回忆
提示 5:使用检查点和 /restore 作为撤销按钮
提示 6:读取 Google Docs、Sheets 等
提示 7:使用 @ 引用文件和图像以明确上下文
提示 8:动态创建工具(让 Gemini 构建助手)
提示 9:使用 Gemini CLI 进行系统故障排除和配置
提示 10:YOLO 模式 - 自动批准工具操作(谨慎使用)
提示 11:无头和脚本模式(在后台运行 Gemini CLI)
提示 12:保存并恢复聊天会话
提示 13:多目录工作空间 - 一个 Gemini,多个文件夹
提示 14:使用 AI 协助整理和清理文件
提示 15:压缩长对话以保持上下文
提示 16:通过 ! 传递 Shell 命令(与终端对话)
提示 17:将每个 CLI 工具视为潜在的 Gemini 工具
提示 18:利用多模态 AI - 让 Gemini 查看图像等
提示 19:自定义 PATH(以及工具可用性)以提高稳定性
提示 20:通过令牌缓存和统计信息跟踪和减少令牌消耗
提示 21:使用 /copy 进行快速剪贴板复制
提示 22:掌握 Ctrl+C 用于 Shell 模式和退出
提示 23:通过 settings.json 自定义 Gemini CLI
提示 24:利用 IDE 集成(VS Code)获取上下文和差异
提示 25:使用 Gemini CLI GitHub Action 自动化仓库任务
提示 26:启用遥测以获取洞察和可观察性
提示 27:关注路线图(背景代理等)
提示 28:通过扩展来扩展 Gemini CLI
提示 29:柯基模式彩蛋 🐕
这是一份Linux/Unix环境下进程间通信(IPC)的权威指南,涵盖从基础到进阶的多种技术,适合系统编程初学者与进阶者。
核心内容包括:
1. fork()详解:理解进程复制机制,助你掌控进程创建与管理。
2. 信号(Signals):教你捕获和处理信号,提升程序响应能力与稳定性。
3. 管道(Pipes)与FIFO:实现进程间数据流动,支持单向和命名管道通信。
4. 文件锁(File Locking):避免资源争用,确保数据一致性。
5. 消息队列(Message Queues):异步消息传递,提高进程间通信效率。
6. 信号量(Semaphores):同步多进程访问共享资源,防止竞态条件。
7. 共享内存(Shared Memory):高速共享数据,适合大规模数据交换。
8. 内存映射文件(Memory Mapped Files):文件与内存高效映射,方便持久化数据处理。
9. Unix套接字(Unix Sockets):支持全双工通信,灵活构建本地客户端-服务器架构。
每个章节配有示例代码,细致讲解API调用和使用场景,帮助开发者深入理解操作系统底层IPC机制。
思考与启示:
掌握IPC不仅是写出多进程程序的基础,更是构建高性能、健壮系统的关键。Beej指南条理清晰,语言幽默,实用性强,建议系统编程爱好者必读,助力你掌握进程协作的核心技术,写出更高效、更可靠的应用。
• 采样基础:模型首先计算所有词元(token)的概率分布,再通过采样方法从中选择下一个词元。直觉上选概率最高的“贪婪采样”容易导致输出单调重复,而采样引入“控制随机性”提升多样性。
• 词元分解:采用子词(token)而非单词或字符,既解决了词汇表庞大和未知词问题,又避免了字符级爆炸性序列长度,增强了模型的泛化与跨语言能力。
• 采样技术多样:涵盖温度调节(temperature)、频率惩罚(frequency penalty)、Top-K、Top-P(核采样)、Min-P、DRY(不重复自己)、尾部自由采样(Tail-Free Sampling)、Mirostat自适应采样、Beam Search、对比搜索(Contrastive Search)等。每种方法各有侧重点,如温度调节控制“创造力”,Top-K限制候选词数量,DRY防止n-gram重复,Mirostat动态调整采样以维持稳定惊讶度。
• 采样顺序影响显著:先后执行顺序决定最终概率分布形态。如先温度调节后过滤,会放大概率差异,先过滤后温度则限制选项更严格。惩罚机制放置在前后也会影响重复抑制效果。
• 交互效应:部分采样器组合协同增效(如Top-K+Top-P),而某些组合则相互冲突(如高温度+低Top-K过度限制多样性)。
• 词元化器(tokenizer)设计:BPE和SentencePiece两大主流方法,前者基于频率合并字符对,后者对原始Unicode流编码并显式处理空白,均影响模型预测空间和采样策略的灵活性。
• 采样算法伪代码详解:文档提供了完整伪代码,便于深度理解与实现,如温度采样通过调整logits的比例,DRY通过检测重复n-gram模式动态施加指数惩罚,Mirostat通过反馈控制实现目标惊讶度。
• 长期洞察:合理采样不仅提升即时生成质量,更影响模型在多样性、上下文理解和连贯性之间的权衡,决定了应用场景(创作、对话、代码生成等)的适用性和效果。
了解采样技术的这些本质与细节,有助于构建更智能、更可控的文本生成系统,推动大语言模型实用化和创新边界。
现代采样器入门指南 | #指南
• 选主流技术栈(零额外成本,高回报):基础网站用 Wix、Framer、BlackBoxAI;真做 Web App 推荐 Next.js + Supabase,后台需要逻辑加 Python;做游戏就学 Unity 或 Unreal,别用 JS 瞎折腾。
• 写简单 PRD(中等投入,高回报):明确需求,拆分任务,分步交付 AI,避免“一口吃成胖子”,防止 Bug 堆积。
• 版本控制必备(低投入,高回报):AI 最终会“炸”代码,Git 强制跟踪改动,方便回滚,远胜自动检查点。
• 提供可运行代码样例(中等投入,高回报):别指望 AI 只靠文档搞定三方库/API,先写小脚本验证核心逻辑,再用作 AI 输入,减少因环境差异浪费时间。
• 遇阻重开新对话(低投入,高回报):纠错别陷入复制粘贴循环,清晰描述问题、预期、尝试过的方法及日志截图,保持对话简洁高效。
Vibe Coding Isn’t Dumb - You're Just Doing It Wrong | #指南
• 面向计算机与数学专业毕业生,覆盖数学、概率、市场理论、脑筋急转弯等核心题型
• 系统梳理面试流程,提供行业顶尖量化公司列表及实战练习资源
• 内置市场模拟与赌博类量化游戏,强化实战思维与策略制定能力🎲
• 深入解析交易基础、心理学与策略构建,助力打造全面量化交易知识体系
• 开源项目持续更新,社区支持,适合零基础到进阶者长期参考与实战演练
• 由行业内资深开发者打造,填补市面缺乏系统备考资料的空白,提高面试通过率
Quant Trading Interview Questions | #指南
涵盖从基础工具使用到高级规划策略的完整知识体系;提供丰富的实践资源和代码实现;持续更新,紧跟AI工程前沿动态
AI-angineers-handbook | #指南