• 覆盖8大类30个细分任务,涵盖文献抽取(LitQA2)、数据库检索(DbQA)、补充信息(SuppQA)、科学图表推理(FigQA/TableQA)、实验协议排错(ProtocolQA)、生物序列操作(SeqQA)及分子克隆复杂场景。
• 公开约80%数据,保留20%私有测试集防止训练污染,内置canary字符串便于模型训练过滤。
• 支持Python 3.10+,提供异步agent接口,便于并行评测与多模型对比。
• 详尽文档和示例代码包含多种基线测试,助力快速上手与复现。
• 数据集开放获取,支持Hugging Face平台同步调用,推动AI在生物研究中的实用转化。
• 论文详述数据集设计与评测方法,具备长期参考价值,为科研AI能力构建提供方法论支撑。
本数据集包括中文和英文的混合数据集,方便双语微调,以及后续做持续的数据修正。
原始的Alpaca英文数据集也存在不少的问题,个别的数学类的sample是错的,有少部分output字段需要修正,一些的标签没有对齐等。本数据集会对原始的数据集进行修改和修正。再此基础上,翻译出对应的中文版本,中文版基本是原始sample的翻译,但是对于一些比如押韵类、时态类的一些instruction,直接翻译导致韵脚丢失,时态不一致等。需要对应的进行人工改写。主要分为以下几个方面:
修改原始英文数据集的一些问题
翻译为中文数据集
调整直译导致的一些sample
code等一些特殊的输出不进行翻译
对齐一些特殊的标签 或者拒绝生成等输出
Alpaca中文指令微调数据集 | #数据集